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ABSTRACT

Aperture limited Fourier operators are like pseudo-differential operators, except
that the symbol of the latter is part of the unknown kernel function of the former.
Such operators arise naturally in inverse scattering when one applies an integral inverse
scattering operator to model data with an unknown (such as a reflection coefficient)
which depends on the source/receiver location as well on interior medium coordinates.
Large wave number aperture limited Fourier operators can be analyzed by multi-
dimensional stationary phase. The nature of the asymptotic expansion of such
operators will then depend on the properties of the kernel function to which the
operator is applied. Of interest in inverse scattering are distributions with support at a
point or on a surface (the singular function of a surface) and piecewise smooth
functions (whose discontinuity surfaces are reflectors).

The purpose of this paper is to present some features of the asymptotics of large
wave number aperture limited Fourier inversion operators and to relate these results to
the application of a recently developed inverse scattering formalism as applied to
Kirchhoff-approximate scattering data from a reflecting surface. It is shown how the
latter problem can be reduced to the former, asymptotically. Then, the more simply
derived asymptotic expansions of the former can be applied to predict the output of the
latter.
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ABSTRACT

Aperture limited Fourier operators are like pseudo-differential operators, except
that the symbol of the latter is part of the unknown kernel function of the former.
Such operators arise naturally in inverse scattering when one applies an integral inverse
scattering operator to model data with an unknown (such as a reflection coefficient)
which depends on the source/receiver location as well on interior medium coordinates.
Large wave number aperture limited Fourier operators can be analyzed by multi-
dimensional stationary phase. The nature of the asymptotic expansion of such
operators will then depend on the properties of the kernel function to which the
operator is applied. Of interest in inverse scattering are distributions with support at a
point or on a surface (the singular function of a surface) and piecewise smooth
functions (whose discontinuity surfaces are reflectors).

The purpose of this paper is to present some features of the asymptotics of large
wave number aperture limited Fourier inversion operators and to relate these results to
the application of a recently developed inverse scattering formalism as applied to
Kirchhoff-approximate scattering data from a reflecting surface. It is shown how the
latter problem can be reduced to the former, asymptotically. Then, the more simply
derived asymptotic expansions of the former can be applied to predict the output of the
latter.



INTRODUCTION

This is another in a series of papers [Bleistein, 1987a,b} which analyzes by classical
methods an important advance in inverse scattering proposed by Beylkin [1985]. The
method applies to a variety of source/receiver configurations in a fairly arbitrary host
medium with the viability of the experimental arrangement characterized by the
nonvanishing of a certain Jacobi determinant. Beylkin confirms the validity of his
technique through the application of pseudo-differential operator theory, which predicts
the validity of the result in a large wave number limit. Thus, those features of the
unknown function which dominate the large wave number Fourier transform of the
function, will dominate the output when his inversion is applied to model data. For
example, when the unknown is piecewise smooth, the discontinuities of the unknown
function (reflectors) will dominate, followed by discontinuities of the first derivative,
etc.

Bleistein [1987a], proposes a modification of the Beylkin inversion operator
designed to process data from piecewise smooth functions and produce a reflector map.
That is, at each discontinuity of the medium parameters, this operator produces a
band-limited delta function which peaks on the discontinuity surface - the singular
function of the surface - scaled by a factor from which the change in medium
parameters across the surface can be estimated. That paper deals with the case in
which only the propagation speed varies and Bleistein [1987bi addresses the problem in
which both propagation speed and density vary across the reflector. Current research
focuses on isotropic and anisotropic elastic wave field inversion. The inversion operator
takes the form of an integration over the data collection surface. It has the structure of
a Kirchhoff migration operator [Schneider, 1978] and, therefore, is called Kirchhoff
inversion.

In both of the above cited papers by this author, the validity of the inversion
operator was confirmed by applying the operator to Kirchhoff-approximate data from a
single reflector and analyzing the output by multi-dimensional stationary phase applied
simultaneously to the integration over the data collection surface and the reflecting
surface. Stationarity conditions from the latter integral merely impose Snell's law on
the ray trajectories from a source and receiver to the reflecting surface. Stationarity
conditions on the former integral ties the integration variables to the output point in a
manner that is dependent on the source/receiver configuration.

The main point of this paper is that the analysis of this multi-fold integral can be
reduced by classical methods to the analysis of large wave number aperture limited
Fourier transform-like integrals of functions which depend on both the spatial and wave
vector variables.

This is exactly the structure of a pseudo-differential operator. However, in
application to inverse scattering (in particular, when the modeling data is Kirchhoff
data), the symbol of the pseudo-differential operator is part of the unknown function.
Thus, important results from that theory do not seem to apply here. Furthermore, the
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classical analysis of these integrals leads to detailed information about the structure of
the output of this type of inversion for different classes of functions of interest in
inverse scattering. In particular, the relationship between the peak amplitude of the
output and reflectivity is accessible in the classical theory and has not yet been
deomonstrated in the pseudo-differential operator theory.

Aperture limited Fourier transforms have the advantage that the phase of the
integrand is linear in both the spatial and Fourier variables, making the application of
the method of stationary phase much easier than it is for the analysis of the inverse
scattering operator. In the latter, the phase is a sum of differences of travel time
trajectories. The sum is from source and receiver to either reflection surface point or
output point. The trajectories axe the rays of geometrical optics characterized in the
general case only by the differential equations which they satisfy.

The following section presents the asymptotic analysis of Fourier integral
operators on piecewise smooth functions of the spatial variable, but with the additional
feature that they depend on the unit vector in the dual transform variable, as well.

This is followed by some numerical examples which demonstrate the theory.

The fourth section introduces the application of Kirchhoff inversion to Kirchhoff
data from a single reflector. It is shown there that consideration of output points
anywhere but in a neighborhood of the reflector can be neglected under reasonable
assumptions and then that the integration over the reflector need only be carried out
"nearby" this output point. In this small region, there exists a transformation of
coordinates from frequency and spatial variables over the observation surface to wave
vector variables. This transformation has the property that it transforms the multi-
traveltime phase function of the integral operator into the Fourier dot product of wave
vector with spatial variables. At that point, the integral is reduced to one of the type
considered in the previous sections and the asymptotic output is known from the
results of those sections.

Thus, this type of travel time inversion is seen to be a generalized forward and
inverse Fourier transform of a function of both spatial and wave vector variables. This
is suggested in Beylkin [1985], although that author seems to prefer a space-time
formulation of the solution and interpretation of the result as a generalized Radon
transform.

APERTURE LIMITED FOURIER IDENTITY OPERATORS

Consider the integral

(2= ) fD, d3 k fD d3 z X, (z'/L, ) exp [sk -i . (1

Here, z, z' and k are three component vectors and i is a unit vector. If the domain Dk
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were infinite in extent, and the function f were independent of k, then the integral, I,
would just be equal to f (z/L) for z in D,, and zero, outside, for a broad class of
functions f. This is just Fourier inversion. The structure of the analysis, then, comes
from the nature of the domain, Dk, and the additional dependence of f on k.

The function f is assumed to have as many derivatives as necessary to carry out
all the differentiations below. For functions that are only piecewise smooth enough,
decompose the domain of integration into separate domains whose boundaries include
all of the discontinuities of f in z'. Then, the integral over each subdomaln is of the
type defined here. It will be seen below that, asymptotically, the integral depends
primarily on the boundary values of the integrand at certain critical points. The
manner in which the critical points are determined will make it clear that for a sum of
such integrals, the output will depend on the jump in the integrand across these
discontinuity surfaces. That is, a critical point on a boundary surface for one integral
will simultaneously be a critical point for the other integral sharing the same piece of
boundary.

The length scale, L, is assumed to characterize the size of the derivatives of I.
That is, derivatives with respect to y'= z'/L should be comparable in size to f, itself.
For convenience, the same parameter L is used to characterize the length scales of the
bounding surface of D,.. For example, L might be a "typical" principal radius of
curvature or a lower bound of the principal radii of curvature for the boundary of D.

In application to inverse scattering, the domain, Dk, is symmetric with respect to
the origin. That is, whenever k is in Dk, so is -k The reason for this is that k is
proportional to a frequency, w, thus including -k in Dk whenever it includes + k.
Thus, symmetry of Dk will be assumed below, although it is not essential to the
analysis. Furthermore, it is assumed that Dk does not contain the origin. In fact,
denote by K the minimum distance from the origin to the domain Dk. Now introduce
the dimensionless variables,

p =k/K, y' =z'/L, A=KL , (2)

and rewrite (1) as

IAY) f LPj fD 2 dp sind dO dO D, d 3Y, IAy',? exp [iAp (y -y')] (3)

27r~~~ D. ~p

In this equation, p, 0, 0, are polar coordinates, and the unit vector, A, is given in terms
of 0 and 0 by

= (sin0coso, sin0sino, cosO) (4)
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The domains, D ., and Dp, are the images of Dz. and Dk, respectively, under the scaling
(2). In particular, the minimum distance from the origin in p to Dp is equal to unity.

The objective now is to analyze I(A,y) asymptotically for large A as y varies over
some domain which includes D,.. This is aperture-limited Fourier inversion when the
aperture is such that the length scales of f and its support in the x-domain are "many"
wavelengths for all of the available information in the k-domain. Formally, this is the
asymptotic expansions of f (A,y) as A --, 0o.

The product, Ap A > > 1, appears as a "natural" large parameter in the integral
(3). Thus, multi-dimensional stationary phase in the five variables, 1', 0, 0 will be
carried out, with Ap as a formal large parameter, followed by integration with respect
to p.

The Significance of the Boundary Values in Dy,

Define

-t= PC -(Y Y') (5)

and note that

v' = - *0 (6)

Here, V' is the gradient of $ with respect to the three variables, V'. Since this gradient
is never zero, there can be no stationary points of the fivefold integral. Thus, proceed
to calculate the asymptotic expansion of the integral (3) by using integration by parts
(the divergence theorem). To do so, first rewrite the integrand as

f(y', ) expiAP0] = V'- [if(y', j) exp [iApt] ] + f i(y', j) expt iAp.]}

When this is substituted into (3) and the divergence theorem is applied to the first
term, the result is

ICA,Y) = 10 (A, ) + (A, Y) ,(8)
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10 A'Y)p dp sinO dO dO~ dS, j f (y', ) exp [iAp$][2,r]3 fD 4,

Yl(A~ ) = [] f p dp sinOdedqS fd , d3 y, fI (y', P) exp iAp] (9)

In this equation, A denotes the normal to the boundary, S.1, of the domain D1 -. It
should be noted that the integral 11 (A,y) is exactly like I(A,y), itself. However, in (8),
it is multiplied by 1/iA. Now consider the effect of repeating this process with I, (A, y).
We would again obtain an integral like 10(A,y), but multiplied by another power of
1/iA. Continuing recursively, we obtain an asymptotic series of integrals over Dp and
Sy,. Thus, it is reasonable to conclude that the leading order asymptotic expansion of I
must come from the analysis of 10 (A,y), unless, of course, f (v',j) were identically zero
on Sy., In fact, this last observation leads to the following result.

Lemma 1:
Suppose that f (y',^) is infinitely differentiable in D0 and vanishes "infinitely
smoothly" on the boundary, Sy,. Then 1(A,y) is asymptotically zero to all orders
of 1/A.

Proof:
In (8), 0(A,y) is zero because of the assumptions on f. However, the assumptions
on / are true for f i, as well. Thus, repeat the integration by parts process and
obtain another integral like I(A,y) but multiplied now by 1/(iA) 2 , with an
integrand f2, which also satisfies the conditions placed on f. Repeat the process
recursively and obtain any desired algebraic power of 1/iA as a multiplier. This
completes the proof.

An Example

As an example of this result, consider

0, X'3 < 0,

f(z') = K/~ 3 x[Lz] 3 O.(17)

SVL" '3 exp [- L I X'3 ,z>O .

Note that this function is infinitely differentiable for all z'. Assume that D,, is all
space and that Dk is the symmetric domain K < Ik3 I < K 1. After integrating in all of
the variables except k3 , I, as defined by (1), is given by
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K K dk 3  
1

L±_ exp [Ae+ ik 3 z + iir/4sgnk3  (11)f- v/ K, + K A

In this equation,

A- = Vk 3 j L (12)

This result can be obtained by using results about the modified Bessel function to be
found in Watson [19801 and Abramowitz and Stegun, [19651. From this result, it
follows that

=0A=KL (13)

This estimate is independent of z. With a little more effort, one can show that, for
example, when A = 3, 1I 1 < .04, independent of z. On the other hand, directly from
(10), f (o,0,L/5);1.83. Thus, the aperture-limited Fourier inversion provides a poor
approximation of this infinitely differentiable function for "large" values of A.

Remark:
This example demonstrates the lemma (although the infinite domain of the
example requires a little extra effort). In this example, the decay is actually
exponential in V/'. In general, one can only predict "faster than algebraic" decay.

The point of the lemma is that the integrand in (8) only has boundary critical
points and then, only if the function f , does not vanish infinitely smoothly. That
is, it is the discontinuities of f that dominate the integration. (A boundary point where
f does not vanish infinitely smoothly is, after all, a discontinuity of the function or one
of its derivatives, since its interior limit is not equal to its exterior limit.) Thus, for this
class of functions, the large wave number aperture-limited Fourier integral operator in
(1) is not an identity operator, but, at best, it is an operator whose output depends
only on the discontinuities of f (or its derivatives) in some as yet undetermined way.

Stationary Phase Analysis for I0

Consider, now, the asymptotic analysis of 10 (A, q), in (9). Again the phase is
given by (5), except that g is a function of two sur.,ce parameters, say, or and a2 .
Thus, fourfold stationary phase in the variables, a,, a2, 0, and 0 will be applied to this
integral. The first derivatives of t are given by

-6-



aI= -P , .I I = 1, 2, -- = -- V') - sinO ,(i-,')Oaj ai ' ' o0'O

= (cosocoso, cos~sino, - sinO)

= (-sino, cos , 0) . (14)

Note that the vectors 9 and t are orthogonal to i. Setting these four first derivatives
equal to zero has the following geometrical interpretation. At the stationary point, 1
must be orthogonal to two linearly independent tangent vectors in S,. Thus, fi and
must be colinear or anti-colinear. Furthermore, y - y' is orthogonal to two linearly
independent tangent vectors on the unit sphere in p at the stationary point. Therefore,
ji and y - V' are colinear or anti-colinear. Consequently, ji, n, and y - yv must all line
up.

Given y, drop a perpendicular to S,,. This determines a point, y', on Sy, and a
corresponding pair, a, and a 2 . Furthermore, for this point, A and y - V' line up. Now
frnd to line up with these two vectors. This determines a choice of 0 and 0. In this
manner, a1 , a 2, 0, and 4 are all determined as functions of y. Given the stationary
four-tuple (a 1 ,a 2,0,O), a second set, (a1 ,a 2,7r - 0,7r - 0), also satisfies the stationaxity
conditions, merely replacing the vector j in the stationary set of vectors by - . When

is a direction in Dp, - p is, as well. Thus, there may be none, one, or more than one
such pairs of stationary points for a given choice of V. Those values of y for which
there are no stationary points are points at which 10 (A, y) (and, therefore, I(A, y), as
well) is asymptotically of lower order than for those points where there are stationary

pairs of four-tuples. Stationary points exist when the aperture in contains the normal
from y to one or more points on Sy.

The method of stationary phase requires the computation of the determinant ane
signature of a certain matrix, the Hessian of the phase function. For simplicity of
notation, introduce

0= a 3 , = 4 , (15)

and then define the matrix

[a2= (p* i, j= 1 -4 (16)

Here, all derivatives are to be evaluated at the stationary point. This calculation is
carried out in Appendix A. The result is
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I(A, y) ] G(y V, P) J(A, V) (17)

In this equation, the summation is over stationary points and y', vi and are to be
evaluated at each stationary point. The function J(A, y) is given by

(A, f exp [iAPJ. 3 i y-y' I i+:7r/4 , (18)

with At and IA3 defined in equation (20), below. The domain of integration is the
portions of the rays in the stationary directions, ±, which lie in Dp. The function G is
given by

Giy v'i' , 19

[I l~1 ~ 1 - -Y~r I I 1-- , s 2 A3 r-2 I Y III

Here, icj, j = 1,2, are the principal curvature vectors on Sy. at the stationary point and
rcj, j= 1,2, are their magnitudes. Furthermore,

= sgnpr1 , A = sgn- x2 , I 3 = sgn (y-y') =sgn (20)

In carrying out the sum over stationary points, note that when p is replaced by
-p, IS3 changes sign, so that the exponent changes sign. Furthermore, the factor
A"$/p changes sign, so that the quotient, n'Ip/p changes sign. Thus, these two
integrals add up to yield an integral with a signed variable p on both positive and
negative parts of the real line. Below, let us assume that this pairing has occurred.
The integration is to be carried out over the two intervals simultaneously and the
summation is over only half of the stationary points, say the ones for which P3 > 0.
When p3 = 0, some equivalent ordering in j or 2 must be used.

y on SY,

Consider the integral in (18) when y approaches the surface Sy,. Then, for the
nearest stationary point, the phase approaches zero in this limit. (There may be other
stationary points further away on Sy, for which the limit is not zero.) For this
distinguished stationary point, J(A,y) is 0(1) in A in this limit, whereas it is 0(1/\)
for all other stationary points. Thus, J(A,V) changes its order in A when y moves to
Sy,. Therefore, it is reasonable to expect the sum to be dominated by this nearest
stationary point.

-8-



It is shown in Appendix A that for y near S,, A at this distinguished stationary
point is equal to zero. Then J can be recognized as a band-limited step function. The

magnitude of the step can be determined by evaluating G(y,y',) in the limit when y
is on SY,.. The result is

G = f (y, y onSy, (21)

That is, the magnitude of the step is just the value of f (y, ), which is the magnitude

of the discontinuity of f across the surface Sy, at the stationary value of . For two
integrals over domains sharing the same segment of boundary surface, the stationary
point is shared as well. In fact, the only differences in evaluation of the integral arise
from the different values of the amplitude function, G(y,y',j) in the two integrands
and the fact that a has opposite direction in the two integrals. Thus, the sum of the
integrals will yield a difference of function values which reduces to just the jump in the
function f when y is actually on the surface Sy, and for the same value of P^. This is the
main result regarding the asymptotic identity operator, (3).

It should be noted that if the domain Dp does not contain the stationary value

= ;, that is, if the normal to Sy, at a particular y is not a direction in Dp, then there
is no stationary point. In this case, the asymptotic expansion of I is lower order and,
presumably, smaller in magnitude. This will be demonstrated in the next section
through numerical examples.

Example: Aperture Limited Fourier Inversion of a Step Function

As a simple example of this type, consider the function

.A, 1 < y :52,

f(Y',) = (22)

0, otherwise.

Assume that Dy, is the support of f and that Dp is a domain symmetric with respect to
the origin that intersects the line P = P 2 = 0 with p 1 on Dp. Call that intersection

D 3 . By substituting this function into the definition (3) of I(A,y), it is fairly
straightforward to obtain the result

A ; p3  F r ~-x A2 1
0(, Y) = A [±P [Sep AP3 (Y3-1)] .x A3(32 (23)

The integral here can be recognized as a difference of band-limited step functions which

define the support of the function f (1',j) in the y'-domain.
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For this example, A, defined in (20), is identically zero, as are the principal
curvatures at both boundaries. Furthermore, n p =:±1 at the two boundaries,
accounting for the difference in sign in the two terms of the integrand. Finally, note
that the effect of integration in W', followed by P, and P2 is to evaluate i = (O,0,±1),
that is, colinear or anti-colinear with the normals to boundary of the support of

f (V'). Thus, if we were to introduce a multiplier, g(j) into the definition of f, all of
the integrations could still be carried out to yield (23), except that now the integrand
would have an additional factor of g(0,0,1) as predicted by the theory. In summary,
the asymptotic result is exact for this simple example.

Extracting Information about f on S. ,

In applications of this analysis to inverse problems, the aperture limited
information about f (z'/L, i) in the Fourier domain is the known data and the
objective is to extract information about the function f (z/L, k) in the spatial domain.
The analysis presented here suggests that from large wave number aperture-limited
data, one can, at best, expect to extract information about the boundary values of
f (z/L,k) at a value of k distinguished by the fact that it is colinear with the normal to
the boundary passing throuh z More generally, one might hope to determine the
value of the jump in f (z/L,k) across its discontinuity surfaces in the x-domain at the
distinguished k value.

There are two issues to be addressed: first, how one might most easily extract that
information about f. In practice, band limited step functions are not easy to recognize.
That is, given numerical output rather than an analytic expression for the band-limited
step, the location of the step and its magnitude are not easily extracted, nor is
information about the normal to the discontinuity surface of f. In fact, the amplitude
of the band-limited step function is actually equal to zero right at its discontinuity,
significantly mitigating the effect of growth of the integral I from 0 (1/A) to 0 (1) in
this region. Thus, searching for the midpoint of a band-limited step would not seem to
be the most desirable approach. The second issue to be addressed is how one could go
about determining the distinguished value of j = k without having to actually construct
the discontinuity surface. These issues will be addressed in the order presented.
However, note that neither of the solutions to these problems is new. The former
problem was first discussed in Bleistein and Cohen, [19791 and the latter was addressed
in Bleistein, [1987a,b].

Processing for a Scaled Singular Function of the Boundary Surface, S.,

The singular function of a surface, to be denoted by 'f(z), is a Dirac delta function
with support on the given surface. Thus, it is a distribution having the property

- 10-



00f_ I(z) G(z) d3z = f G(z) dS (24)

Here, S , is the surface having '-(z) as its singular function. Knowledge of -y(z)
constitutes mathematical imaging of the surface S.. A graphical display of -y(z)
provides an actual image of the surface.

With minor modification of the kernel, the integral operator in (1) can be

transformed into one which the singular function of the boundary surface as its output,
within a scale factor which will provide information about the boundary values of the

function f (Vi).

What we need to transform the integral J(A,y) in (18) into a band-limited delta

function is a multiplier which cancels the factor A'./ip of the integrand. Thus, we
need a multiplier of ip on half of the p-domain and - ip on the image of that domain

through the origin. The multiplier, iksgn &.k with i a constant' unit vector, will do
the trick. When this factor is inserted into the integrand in (1), it will have exactly the
desired effect. After rescaling,

iksgn& i = ipsgn& .A (25)

When Dk contains all directions, k, this multiplier is not defined in the plane of

directions through the origin with ; as normal. In most applications, however, there is

at least one plane of directions in which there is no information. That is, the domain

Dk will exclude some plane through the origin. Choose ; as the unit normal to that
plane.

Proceeding with this idea, in place of the integral (1), consider the following:

S(2ir)3  ksgn dk d 3 z'f(z'/L) exp [ik'(z- e)] (26)

'There is no reason why ; must be a constant vector. I simply have not found a need to make U
variable.

- 11 -



After rescaling according to (2) and (4), one obtains in place of (3) the integral,

W) P 2; fD s~gn& dp sinO dOdo6

f

and the integral 10 in (8) and (9) is replaced by

o(,, Y) [ 3 f P2 agn .t dpsinO dO do

The asymptotic analysis of this integral proceeds as for 10, yielding in place of (17) and
(18),

I(X,V) G Q(y, Y) (X, V) ,(29)

j (A', Y) =A 4 f dpexp iIXp y-y't + iI-7r/4 , 4 = n ' S -n (30)27r ftI

Except for the new parameter, A4, (±1), the constituent functions and parameters here
are still defined by (19) and (20).

For y on S,, there is astationary point at y = y as long as n^ is a direction in Dk.
For this stationary point, J = 0(A), whereas for all other stationary points, or for y
not on S,, J = 0 (1) in A. Thus, as y approaches S,, one stationary point dominates
the value of I(A, y) and the function value is larger by 0(A) than the value for y
bounded away from S,. As noted earlier, for this distinguished stationary point, Is 0,
at least for v"near S,-. Recalling that we must sum over the two stationary points, --,
the integral J becomes

/4= f + f dpexp IAp I Y- Y (31)
27r _P+ p
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The limits of integration, p- and p + are the intersections of the ray from the origin in
the stationary direction ^ with the domain, Dp. In the k-domain, that is, undoing the
scaling defined by (23),

-k_ k+,

J(X,y) = f_ + dkexp [ik I z-z' (32)27 k+ k_

Here, k± have definitions completely analogous to p±:. In either form, J can be
recognized as a symmetric (zero phase) band limited delta function with support at
ly -Y =0 [equivalently, Iz- = 01, which occurs when V is on S., [or x is on an
equivalent surface in the x-domain, S,,]. In this limit, the dominant term in (29) is
readily evaluated with the aid of (21):

I (A, Y) - I(p+ -- _)A4fY, )/r =(k + - k_)4f(z/L, k)/7r , y on S. (33)

Thus, the value of I on S. is proportional to the interval width in the k-domain along
an appropriate ray, multiplied by 4f (z/L,k)/r. If the integrand contained a filter
factor, F(k) = F(Kp), then the factor p+ - p- is replaced by the area under the filter
function in the stationary direction of .

Qualitatively, for z near S', the dominant term in the sum in (29) has the form of
an aperture-limited singular function scaled by a slowly varying function. The scale
factor becomes the jump in the function f multiplied by A4 when z is on S,, and the
aperture-limited singular function becomes the area under the band pass filter in a
distinguished direction, divided by 27r.

Within a sign, this output is the leading order high frequency band limited
asymptotic expansion of the normal derivative of the discontinuous function, f (y, ^) in
the x-domain. We obtain this result even though we use no a priori knowledge about the
boundary surface or its normal direction in the processing operator, I.

Example: Processing for Singular Function Output

We return to the example (22). However, now, instead of applying the operator
(1), we apply (26). At the same level of computation as in (23), the output is now

(A,V) - 2A.. f dP3 [exp[iAP3(Y3 -1)j exp[iAP3 (Y3 - 2)]
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1P3+
A sgntU3  sin [AP 3(y -1)] sin 1\P 3 (Y 3 -2) P3

V --1 - 13-2 ]
P3 :-- P3-

One can see here that I(A, y) is a difference of band limited delta functions that peak
on the boundary surfaces of D,.. That is, the output is proportional to the band
limited singular functions of the boundary surface(s), S.. The scaling factor is the
jump in f, namely, A multiplied by 113/r. The choice of sign here comes from the
fact that the outward normal to the boundary has opposite direction on the two
portions of the boundary surface.

For Ap3 _ "large" say, at least 3, the peaks of the two singlular functions will be
well separated. If, in addition, the percentage bandwidth, (P3+ - P3-)/(P3+ + P3-), is
"large," say bigger than .5, the side lobes of the sinc functions appearing in (34) will be
well damped and the boundaries will be well delineated by the band limited singular
functions. The peak values of I are given by

AA sgn U3  A sgntU3I(Aziz 2 ,1) V (P3+-P3-) V (k 3+-k 3-)

A.\ sgntu3  A sgn U3
I(A,X,2,2) - - (P3+ -P3-)- (k3+ -k 3 -) (35)

Thus, the modified operator, (26), produces a result from which the boundary surfaces
and the amplitude of the discontiuity of f in the x-domain is more readily determined
than from the ordinary Fourier inversion in (1).

It should be noted again that if the aperture Dp [equivalently, DkI did not contain
some segment of the line PI =P2 =0, then I(A, y) =0. Since this line is the direction
of the normal to the discontinuity surface of f, this result is consistent with the theory.

Example: Aperture Limited Fourier Inversion for a Ramp

The next example will show two features of aperture-limited large wave number

Fourier inversion that are predicted by our results. Consider the function

[A(1-Y' 3 ), 0 < Y'3<1

= (36)

0 ,otherwise

with D ., the support of f (',).
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It is straightforward to carry out all of the integrations of the operator I defined
by (1) except P3 to obtain the result

I(,Y) -, 4A f dP3~ fexp [AP3 Y3]
211 D. 'P 3~ L J

If D3 were the entire line, then the Fourier transform of the first exponential would be

a step with support, Y3 > 0. The next two terms, which correct this step to produce
the appropriate finite ramp, are lower order, 0(1/A), for large wave number aperture-
limited data. Note that a phase depending on the difference, Y3 -1, arises only in this
lower order term. The reason for this is that the function defined by (36) is continuous
at this boundary.

From aperture-limited large wave number data, one should not expect to detect
the lower order, 0 (1/A), contribution to the Fourier transform of f (y, j), but only the
leading order term. To leading order, then, I(A, v) is a band limited step function with
discontinuity on the discontinuity surface of f (y, ^) and amplitude equal to the

amplitude of the discontinuity of f (y, '). We could use the operator, I (A, y), defined
by (26) or (27), to more easily detect the location of this discontinuity surface and the
value, A. In this case, the leading order step would be replaced by a leading order

singular function of the boundary surface, Y3 =0, while the second order ramp would
be replaced by a second order step on the interval, 0 Y3 <1.

Of course, one might consider using yet another operator, with multiplier - A2p 2

to detect the jump in the first derivative of f (y,j). While this will work for synthetic

examples, it would be considerably less reliable with field data and "many"
discontinuity surfaces of f (y,) and its derivatives.

Determination of at the Distinguished Stationary Point

We will show here how to determine the distinguished value of at the stationary
point by direct computation of an operator output. We consider this method superior

to determination of the distinguished graphically from the image of the boundary
surface. This method has been used successfully by Parsons [1986] and Sullivan and

Cohen [1987].

The determination of A is equivalent to the determination of sinO or cosO and sin4
or coso at the stationary point. To find these angles, note first from (4) that
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k3  P13 ______ _ Pi
cos - , cos k= = (38)Vfk +s k2 p 1 + P2

Suppose that we define two new integral operators with these factors introduced into
the kernels of the operator, I. That is, starting from (26), define

I= f k3 sgn u 'd 3k f d 3 Z f('/Lk) exp [ik(z-z')] (39)

2 D,"Tf_ klczsgnk 3 d3kf d3zf(z'/L,k)exp[ik.(zz,,] (40)

Let us now consider the asymptotic analysis of l e and 1,. Clearly, it will
proceed exactly as above, with only the amplitudes of the results being affected by the
changes introduced here. Thus, the peak values of these new integral operators can
also be predicted. The) will differ from the result for 1, itself, by the factors,
cosO, coso, each evaluated at the distinguished stationary point. That is,

fOpeak 1€peak

cose= 8 coso 4 pa, yon S,, (41)
S peak I pek

The function, sino, can be determined this way as well, while sinO can be defined in
terms of cosO, taking the positive square root (0 < 9 < 7r). Given these values at the
stationary point, j is determined there.

Integrands with Other Types of Singularities

It should be noted that the multiplier, ik sgn a.k is a "best choice" only because
the properties of the function, f (z'/L, k), namely, that this function was assumed to
be smooth but not to vanish smoothly on the boundary of its domain of definition. In
particular, the original operator, , will optimally depict a function which is a (sum of)
Dirac delta function(s). Furthermore, I(z) will also be a better operator than I for
singular functions. That can readily be verified now, as follows. Let us consider the
application of I as defined by (1) to the function,

f(z'/L,k) = (z'/L) , (42)

with -y(y'), the singular function of a surface, S, as defined in equation (24) and the
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related discussion. Substitution of this function into (1) and use of the change of
variables defined by (2) and (4) leads to the result

I(A,y) =[1 f p2 dp sinO dO dO dSexp iAP] (43)

with t defined by (5).

Thus, without introducing an additional multiplier to modify the operator I to I,
this integral is exactly like the integral I 0(A,y) defined by (28), with the amplitude of
that integral, sgn ('i) ^- (P',) =A4f (y',A) replaced by unity. Consequently, the
asymptotic analysis for this integral has already been done. The output will be an
aperture limited version of -y(y). That is, it will be a band limited delta function along
each normal which is a direction from the origin to Dk. The structure of the delta
function will depend on the extent of that ray in the k-domain and also on any
smoothing that might be applied through the introduction of a high wave number band
pass filter along that ray.

Asymptotically, then, the high wave number aperture limited Fourier inversion of
data for a singular function behaves just as the exact result did for a planar surface.

Minor Extension

In the applications of interest, the function, f, may depend on X, in addition to the
other dependencies indicated in (1). This does not change the results stated here, since
z merely acts as a parameter with respect to the integrations in (1).

A Form That Arises in the Analysis of Kirchhoff Data for the Inverse Scattering Formalism

A last extension to be considered here is the case in which the integrand has both
a singular function and a smoother amplitude function. Namely, in (1), replace
f (z'IL, k) by f (e/L,z/L, k)-(z°/L). Then, after exploiting the singular function, the

integral (1) becomes

I = 1 f d 3 k £ dS'f(e/L, z/L,i )exp i(z -z')] , (44)
(27r) 3 fDk s

or, in dimensionless variables,

- 17-



I = _L 3 d 3 p f dS1. f(', V, )exp [:Ap$] . (45)

Here, $ is defined by (5). Except for the fact that we have not used polar coordinates,
the integral is of the same form as (28) with the amplitude
n' sgn fi' (y%,. = Ad (y', ) replaced by f(y',y, ). The analysis proceeds as
before, with the extra dependence on y in f merely playing the role of a parameter as
regards the asymptotic analysis of the integral.

Consequently, the asymptotic expansion of the integral in (45) is given by (29),
with the following insertions. The function G(y, Vp) is defined by (19), except that
/ (y', ^) is replaced by f (y',y, ) and J is given by (30), (31) or (36) with u4 replaced
by unity. In particular, for z near S, the asymptotic expansion is dominated by a
scaled band limited singular function. When z is on S, the scale factor is just the
amplitude, f (z'/L,z/L,k), evaluated at the stationary point and determinable as
described in the discussion above for determination of P.

Summary

It has been shown here that the high wave number aperture limited Fourier
inversion of the Fourier transform of a piecewise smooth function is dominated by the
function values on the discontinuity surface(s). The inversion is approximately a band
limited step function of normal distance from each point on the discontinuity surface.
The amplitude of the step function is proportional to the jump in the function across
the surface at the point in question. By modifying the inversion operator, the output
can be transformed into the singular function(s) of the discontinuity surface(s) of the
original function, again scaled by the jump in the original function at each point of the
discontinuity surface. This modification facilitates the numerical identification of the
discontinuity surface(s) and the amplitude of the jump at each point on the surface(s).

This aperture limited inversion of data was shown to produce an aperture limited
approximation of the singular function.

In the language of asymptotic expansions of integrals, given an output point, y,
the high wave number aperture limited Fourier inversion of a piecewise smooth
function or of the singular function of a surface is dominated by certain critical points
which can be determined as functions of y. A critical point consists of a location I' in
the spatial domain and a direction j in the dual Fourier domain. When Y is on a
discontinuity surface of the smooth function or on the support surface of the singular
function and the normal to the surface in question is a direction P in the aperture Dp,
the output is at least O (A) larger than it is otherwise. This increase in order can be
exploited to detect the discontinuity surface(s) of piecewise smooth functions or
support surface(s) of singular functions and estimate an amplitude function on the
support surface(s).
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NUMERICAL EXAMPLES

We show here some numerical examples that demonstrate the theory. All are two
dimensional, allowing us to use the third dimension to depict the amplitude of the
output.

Aperture Limited Singular Function

As a first example, consider the singular function of the line, z =0. This function
has as exact Fourier transform, 6(k 2). Thus, the aperture limited Fourier inversion will
be nonzero only if Dk contains some segment of the line k2 =0. In the context of our
theory, the normal to the support domain of the singular function is (0,1). Therefore,
this must be a direction in Dk. When the converse is true, the theory predicts that the
output will be asymptotically zero to leading order. In this simple example, the
asymptotic result is exactly true.

Figure 1 depicts the singular function of the line, z =0. This depiction of the
singular function extends over only one sample point and is therefore a full bandwidth
singular function for the discrete (FFT) Fourier transform to be used below. The extra
"spike" at the corner is shown for normalization purposes; it will appear in subsequent
figures. Figure 2 shows the k-domain, Dk, to be used for inversion. Note that this
domain includes the normal direction to the line, z =0 of Figure 1. Figure 3 shows
the aperture limited inversion. The aperture limited singular function adequately
identifies the original function. Figure 4 depicts another k-domain, Dk, for inversion of
the same data. Note that this domain does not include the normal direction to the line,
z,=0, although, on a percentage basis, it is much larger than the previous domain.
Figure 5 is a plot of the aperture-limited inversion for this domain, Dk, on the same
scale as Figures 1 and 3. Figure 6 shows the same output, scaled up by six orders of
magnitude.

The more general case is demonstrated in Figures 7-11. Figure 7 depicts the
singular function of a circle. Figure 8 depicts a k-domain, Dk, in which the angle of k is
not restricted, but only its magnitude. Figure 9 is the inversion, showing an aperture
limited Dirac delta function along every radial line (every normal to the original curve).
Figure 10 shows an alternative k-domain, Dk, for which the direction of k [equivalently,
k is restricted, as well. Figure 11 shows the inversion. Here, the singular function is
adequately defined only for the normal to the circle in the angular aperture of Dk and
the output falls off strongly to zero outside of that angular aperture.
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Relevance to Inverse Scattering

This last example has relevance to inverse problems. The surface, S7, might be a
reflector. Thus, determination of y(z//L) from aperture-limited Fourier data
constitutes mathematical imaging of the reflecting surface. In practice, the singular
function of the surface might also be multiplied by a reflection coefficient which is a
function of k. As noted above, k coligns with the normal to S. and therefore it is fixed,
as well. Because of the subtleties of the dependence of the reflection coefficient on k in
applications, the reflection coefficient that is determined need not be the normal
reflection coefficient. See Bleistein [1987a, 1987b] and the discussion of the next
section.

APERTURE LIMITED INVERSE SCATTERING

From references cited here, as well as many others, the evidence is overwhelming
that high-frequency inverse scattering is closely related to aperture-limited Fourier
inversion. However, it is not always true that high-frequency inversion is equivalent to
large wave number inversion. See, for example, Beylkin, Oristaglio and Miller 119851;
Miller, Oristaglio and Beylkin [1987]; and Mora [1987]. For simple scattering
experiments in which the sources and receivers are on the "same side" of the s ,ttering
region, high frequency does, indeed, correspond to large wave number. That is the
type of experiment of interest here.

The inversion operator in equation (49), below, was proposed by the author
[Bleistein, 1987b] for an inverse scattering problem with the following properties:

(1) a variable background sound speed and density for back propagation are
prescribed;

(2) a source receiver array, such as (a) common (or single) source, multi-receiver,
(b) common receiver, multi-source, (c) common offset between source and
receiver, is prescribed;

(3) the data can be described as high frequency data.

Under further conditions to be discussed below, the operator was shown to yield a
reflector map and a means of estimating parameter changes across the reflector. In this
section, we show how analysis of the application of the inversion operator to model data
is related to the discussion of large wave number aperture limited Fourier inversion as
discussed in the previous two sections.
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The Inverse Problem

Consider an inverse scattering problem for acoustic wave propagation in which the
source/receiver pairs, z and z,, respectively, are identified by a parameter 2= ,

as follows:

X. = Z(), Z, = Zr(C) . (46)

For example, in the case of a common (or single) source experiment, x, would be a
constant vector denoting that fixed position and the function x;(C) would be a
parametric representation of the receiver surface. For the common receiver case, the
roles of ;, and z would be reversed. For the experiment with common (or fixed) offset
(between source and receiver), both ;, and z,. would vary with C.

It is assumed that the sound speed c (z) and the density p(z) are known down to a
reflecting surface S; below S, these variables take on new values, e+(z) and p+(z), to
be determined, along with the surface S, itself.

It is further assumed that u(z,z8 ,w) is the response to an impulsive point source
at z. Above S, u satisfies the wave equation

pV. Vu + (47)

Below S, u satisfies this equation with right side zero and with p and c replaced by p+
and c+, respectively. Furthermore, u must satisfy two continuity conditions on S,
namely that u and 1/p ou/an are continuous across S.

The total solution above S may be viewed as the sum of a free-space Green's
function and the upward scattered response to the reflector. The Green's function
satisfies (47) everywhere, with c (z) analytically continued throughout space as an
infinitely smooth function.2 Denote the second term by Us(ZZS,w). Thus, the data for
the inverse scattering experiment is

D (6,w) = us ~( )Z ,(,WC) (48)

In Bleistein [1987b], the following inversion operator to process this data was

2Clearly, there are extensions in which the reference is only "piecewise smooth" and the Green's
function is replaced by a "primaries only" Green's function, or one that contains multiple reflections
through interfaces above S.
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introduced:

= -- if p(zx) di h(, 6) 1 N,(z,)
1 f (Zf cj,) A(z,zA(z,z,) I + VT(x, x,)

.f iw dw F(w) exp -iw [,r(z,;z) + T(z, z,) ] I D (C, w) .(49)

The domain of integration S is the set of -vaues which are required to cover the
source/receiver array. The domain of integration in w is limited by the high pass filter
F(w). The functions r(xx,z) and A(z,z8 ) [T(z,z7 ) and A(xzr)] are the WKBJ or ray-
theoretic phase and amplitude of the constant density Green's function with source at
Z, [zj and observation point =

The function, h (zC), is the essential element of this inversion formula. It is the
determinant,

V [T(Z ,) + r(x,.)

h(,C) = det A.L V [r(Z, z,) + r(Z z,) (50)

aa6 LT(Z, Z) + (X

The factor, N1 (z, ), was omitted in the above cited references. This is a
neutralizer or cutoff function having the property that h is of one sign on the support of
this function. The neutralizer is equal to unity except near the boundary of its support
domain, where it decreases C' smoothly to zero. The introduction of this function
precludes spurious artifacts in the output arising from the boundary of S . Further
discussion of the assumption, h =O, is provided in Beylkin [1985] and in Beylkin,
Oristaglio and Miller [1985].

The derivation of this inversion formula starts from Beylkin's [19851 equation
(4.3), expressing that result in the frequency domain. Asymptotic analysis indicates
that for high frequency band limited data, Beylkin's inversion formula will produce a
band-limited step function wherever the impedance has a discontinuity. That is, the
output of the inversion formula is similar to the output of aperture limited Fourier
inversion applied to piecewise smooth functions. Proceeding with an _analysis
equivalent to the determination of the modified Fourier inversion operator, I, of the
previous sections, leads to a modification of the Beylkin inversion operator that yields a
singular function output instead of step function output. The key to this modification
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is the identification of an appropriate wave vector, k, which is also indicated in
Beylkin's [1985] paper.

In Bleistein [1987a,b], the validity of the modified inversion was confirmed by
applying the operator to model data derived using the Kirchhoff approximation. The
purpose of this section is to show that, in fact, the analysis can be reduced to the
simpler problem of aperture limited Fourier inversion as discussed in the previous
sections.

To show how this is done, the inversion formula is applied to the upward scattered
response from a single reflector, S, modeled by the Kirchhoff approximation. This
representation can be found in many sources, including Bleistein [1986], eq. (74). In the
notation used here the result is

D( ,w)- iw[P(zr) 1 R(Z',z,)A(z',z,)A(z',zr) .V' [r(zz.) + r(z', Z')
Lp(z8) j I~

-N 2 (z')exp{2W[r(za,,z) + (zr, z)]} ' 51

In this equation, V' denotes a gradient with respect to the z' variables and R (z',;) is
the geometrical optics reflection coefficient,

R(z',z8 ) =

1 an p+(z1) 1 [a1(,z) 1 2 1 12

pz) an p+ 1) C2 (Z) c 2 (z') an

1 aT(+,) 1 _____1 
1 a z .) 12 /2 . (52)

p(z') an + W)zW)C,(W) an

The unit normal A points upward and a/an = n'V'; N2 (z') is a neutralizer function,
equal to unity except in a neighborhood of the boundary of S. If S is of infinite extent,
let N2(z') vanish "sufficiently far" from the origin. The reason for this, is that, again,
edge effects from the boundary of the domain of integration are not of interest in the
current analysis. The result (51) is substituted into (49) to obtain the following multi-
fold integral representation of the output O(z) when applied to this synthetic data:
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f 5  |
8 3 S C 2e h (, C)I Ni(:rf W2 dw F(w)

"f R R(x', xo) A (z', --) A (z', z,) exp iwt (-, z ,Z., ZO)

N2 Wz) "V r(Z.ZB) + r(z'. Z') I dS" (53)

In this equation,

(, z " ',, Z) = (z" 8) + T(zZr) - [7(z' "z8) + r("'z)j (54)

is the difference of travel times, source point [z] to input point [z'] to receiver point
[z7] minus source point to output point [z]to receiver point. The surface S is described
parametrically in terms of two parameters, or, a2, by

Z' = z'(r), = (l,02) (55)

In terms of these parameters,

dS" = 4 d 1 do , (56)

with g the first fundamental form of differential geometry for S in terms of the
parameters a.

In Bleistein (1987a], the method of stationary phase was applied to the integral
(53) in the variables e and o. The conditions of stationarity have the following
interpretation. First, the point z' on S is such that Snell's law is satisfied by the rays
from z, and z, to z'. A particular source/receiver pair is picked out by the second
condition which ties the triple, z, zr, and z to = This condition states that the sum of
traveltime gradients from z' to zr and z, and the same sum from z must have equal
projections on the observation surface defined by (46). For z on the reflector, S, e = z
is a stationary point, with z, and z, being the source receiver pair whose ray
trajectories satisfy Snell's law for reflection at this point. The condition, h * 0,
guarantees that there is only one such point for sufficiently smooth surfaces, S. It is
assumed that the surface under consideration is in that class. Clearly, then, for z in a
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neighborhood of S, there is still only one stationary point, having z = z as its limiting
value as z approaches S.

Let us suppose, now, that z is near S. Introduce a neutralizer function, N(z',z),
which is identically equal to unity in some disk, say I e - z < r, identically equal to
zero outside some larger disk, I e- z r2 > rI, and is infinitely differentiable
everywhere. Then the following is true.

Lemma 2:
Consider the integrals obtained from (53) by introducing N(z',z) and
N'(e,z) = 1- N(z',z) as multipliers in the integrand. Call the first integral

/3N(Z) and the second integral # *N(z). Then Ov(z) = o(w-), where m is limited
only by the smoothness of the integrand.

The proof is given in Appendix B.

Now consider the integral, I#N(z). This integral can be reduced to an aperture-
limited Fourier identity operator of the type discussed in the previous section. To do
so, first observe [Beylkin, 19851 that for z' near z:

That is, the phase is nearly of the form k-(i" - z), with

k = wV, [,-(, Z,) + r(z, Z')] (58)

In fact,

Lemma 3:
In some neighborhood of z there exists a change of variables from (w,e) to
k = (kl ,k 2 ,k 3) with nonvanishing Jacobian, having the following properties:

k=w[V, [(ZA -) +T(Z, 2)] +O0 Z' -ZI) (59)

and

- -(k) = 2 H(z,,) =w2 [h(zC) + O(Iz'-z,] (60)a(w, )

The proof is given in Appendix C.
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It is interesting to note that the regularity of the transformation does not depend
on w, but only on the spatial variables. Furthermore,

Lemma 4:
k = k/I k I is a function of Csgn w with nonvanishing Jacobian. Conversely, for
each choice of sgn w, C is a function of k.

That is, if we were to pick two parameters, such as the first two components of k or the
polar angles of k with respect to some set of axes, then these variables are functions of
C (and not w) with nonvanishing Jacobian wherever H(z, e) is nonvanishing, except for
the sign of w. This follows from the proof of Lemma 3.

This result has an important implication with regard to the aperture of k values in
the domain of integration after transformation to these variables. The directions of the
k-vectors in the domain of integration is solely a function of the source/receiver
configuration. The approximate form of the transformation in (59) suggests further
that this angular aperture is almost completely determined by the sum of the gradients
of the travel times at = Equivalently, this is the sum of the tangents to the rays from
the source and receiver. In Beylkin, Oristaglio and Miller [1985] and Miller, Oristaglio
and Beylkin [1987], extensive use is made of this fact. For our own purposes, here, the
significance of this observation is what it implies about the integrand of (53) after
transformation. Namely, the integral takes the form

31- fo d3 kIF(w(k)) dS' f(z', )exp [ik'(z'- z)] (61)
87r3  Dk s

In this equation,

f (Z ~ ; -R(', z,) A (z', ,) A (z', z) n-- V' [r(', Z8) + T(z', z,)] I h(z, C) IA (z ,=r)A(z; ,r)IVTZ .+ rz 'IIHzxCI

The integral (61) is exactly of the form of the integral (44), except that in the
application here, the explicit dependence on the length scale, L, has been neglected.
The condition that the wave number be large, in order to apply the results of the
previous section, rust requires that V[r(zz.) + r(xzr)] be nonzero. (Note that this
gradient vanishes when the rays from z. and zr are tangent at z. That is, they are
both part of a single ray from z, to zr. Such ray paths would naturally arise in
transmission tomography. This theory does not apply to those applications. On the
other hand, diffraction tomography falls in the range of applications of this theory.)
That this sum of gradients does not vanish is assured by the assumption that h (z, 6) be
nonzero, because this vector is the first row of the determinant in (50). Once the
minimum magnitude of this vector is determined, and the natural length scale L for the
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integral (53) is established, the burden of "large wave number" is put on the frequency
parameter. In seismic applications, frequencies as low as 4 Hz will prove to be high
enough for the corresponding parameter, A = KL, to be large. Thus, the theory of the
previous sections applies in seismic applications.

It follows from the analysis of the previous section that the output of (61) is
proportional to a band limited singular function of the reflecting surface. The
proportionality factor may be constructed from the discussion below (44) and the
definition of f in (52). When z is on S, this factor reduces to f (z,z,k). However, the
distinguished value of k must be ±A as a consequence of applying stationarity to the
derivatives in (14). (This condition is just Snell's law.) From the approximate form of
k in (58), it is apparent that i must point downward, while the normal to S, A, in the
Kirchhoff representation of us is an upward normal. Consequently, in (62)

i ' TZ'~) rzz) =-Vr(z X.) + Vr(z, zr) . (63)

Z =Z

Furthermore, from (60),

H(z, z, h) (, h ) (64)

Thus, when the distinguished point, z on S, is in the region where the neutralizer
functions are equal to unity,

f(z, z, i) = R( z,) (65)

In this equation, z, is fixed by the stationarity conditions [(14) and the change of
variables] such that Snell's law is satisfied. This is an angularly dependent reflection
coefficient. It is a function of cosO, with 0 the supplement of the angle between ; and
Vr(z, z). At the stationary point, because Snell's law is satisfied, this is just half the
angle between Vi'(z,) and Vr(zz7 ). The function, cosO is determined in a manner
similar to the way cose and coso were determined in the previous section, using the
identity

IVr(x, z.) + VT(Z, z) =2cosE / c(z) ,(66)

which can be confirmed by squaring both sides. See Bleistein [1987a] for details.
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Application to Born-Approximate Data

In Beylkin [19851, the Born approximation was used to represent the upward
scattered data. The inversion of such data for determination of medium parameters is
more closely akin to the analysis of aperture-limited Fourier transforms of piecewise
smooth functions. For such data, we already know from the previous sections what the
nature of the aperture limited inversion of the data will be. For Beylkin's inversion
operator, the output will be band limited step functions across the discontinuity
surfaces of the integrand (usually, a perturbation in the index of refraction, or some
equivalentJ. By making the modifications equivalent to changing the operator I to the
operator I of the previous section, the output will again be singular functions of the
discontinuity surfaces scaled by the jump in the integrand.

Thus, whether one applies the operator to Born data or Kirchhoff data, the result
is essentially the same, a weighted singular function. The only issue is whether one

interprets the weight in terms of the Born approximation or the Kirchhoff
approximation. It is my view that the Kirchhoff approximation better represents the
upward scattered field in most applications. One reason is that implicit in the large
wave number asymptotics is the assumption of high frequency as seen above. The
Kirchhoff approximation is a high frequency approximation. Furthermore, in many
applications, the change in medium parameters across reflectors, or the angle of
incidence and reflection with respect to the normal, may be large enough to call into
question the use of the Born approximation.

Summary

It has been shown here that the process of applying a proposed inverse scattering
operator to model data is asymptotically equivalent to aperture-limited Fourier
inversion with a dual set of Fourier variables determined from the travel time functions
from source to output point and receiver to output point. The inversion operator
proposed here is a modification of an operator proposed by Beylkin (19851. Where his
inversion would lead to band limited step functions, this one leads to band limited
singular functions. When the bandwidth is of sufficient extent, his operator leads to a
Fourier approximation of the unknown function. When the bandwidth is not sufficient
for this application, butt can be characterized as "large wave number" in some sense,
the inversion proposed here still provides a map of the discontinuity surface(s)
(reflectors) of the unknown function, as well as a means of estimating reflection
strength.

In Bleistein [1987a,bJ, these results are confirmed by applying asymptotic analysis
directly to the integral (53). Here, it was shown by classical asymptotic methods that,
in fact, this result is really a more fundamental phenomenon of Fourier inversion and
the results for inverse scattering follow from those more fundamental results, once one
identifies the Fourier variables.
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For seismic applications, a reflector map would seem to be a desirable output of an

inversion operator. However, Beylkin and his associates [in the above cited references]

have certainly made a strong case for a more complete inversion when the data is

available. The fact that the operator is deduced on the basis of a high-frequency

assumption seems not to degrade the quality of the low frequency output to any

significant degree.

CONCLUSIONS

It has been shown here by classical means that high frequency inversion of

scattered data is equivalent to large wave number aperture-limited Fourier inversion.

The type of output one obtains from the inversion operators of interest can be

explained in terms of elementary ideas about such Fourier inversion. In particular, the

transition from aperture-limited step function output to aperture-limited singular

function output (across the steps) follows directly from the asymptotic analysis of large
wave number aperture limited Fourier transforms.
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FIGURE CAPTIONS

Figure 1 The singular function of the line, z = 0. Also, a reference "spike," to be used
for amplitude comparisons.

Figure 2 The filter function applied in k-domain. The support of this function is the
domain Dk.

Figure 3 The aperture limited inversion back to the spatial domain of the singular
function data from Figure 1, restricted to the domain Dk of Figure 2.
Reference spike in the corner for amplitude comparison.

Figure 4 An alternative filter function in the k-domain. Dk in this case does not
include the direction (0,1) of the normal to the support of the singular
function in Figure 1.

Figure 5 Inversion of aperture limited data for the singular function of Figure 1 using
the domain Dk of Figure 4. Reference spike demonstrates that the scale is
the same as in Figures 3 and 5. Inversion is effectively zero as predicted by
the theory.

Figure 6 Same output as Figure 5, but scaled up by six orders of magnitude.
Figure 7 The singular function of a circle.
Figure 8 A filter containing all angles, limited magnitude of k. The domain Dk is an

annulus.
Figure 9 Aperture limited version of the singular function of a circle using the domain

Dk of Figure 8.
Figure 10 An alternative aperture to apply to the Fourier transform of the singular

function of a circle.
Figure 11 Aperture limited inversion of Fourier data for the singular function of a

circle. The circle is properly identified only for the region in which the
normal to the circle lies in the angular aperture of Dk.
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APPENDIX A

Determination of the determinant and signature of the matrix defined by (16) will
be discussed here. The elements of the matrix are determined from (14) and (15).
They are given by

a2, a2 a2. 4yclai C3r a i  asar ao i'

0 -sinO9- O" i,j = 1,2

a2,@ a2la ( ) -cose9.(Y-')

2 - , p= (cos, sino) . (Al)

With no loss of generality, one can assume for this calculation that a, and a2 are each
arclength variables in the principal directions at the stationary point. In this case, the
upper left two-by-two matrix of elements simplifies to

8 = - b, " ,X , i,j = 1,2 (A2)

Here, 6ii is the Kronecker delta, equal to unity for i= j, zero, otherwise. Also, in this
case, the first derivatives with respect to e7i in (Al) reduce to orthogonal unit vectors.
In addition, the vectors 9 and are orthogonal unit vectors, co-planar with the unit
tangents as a consequence of the conditions of stationaxity. (Recall, the normal to S. ,
is colinear or anti-colinear with .) Therefore, to simplify notation below, introduce
as follows:

. YL' = co8 = sine

2. -- - sin43 a cos . (M)aar2 ' a2
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Direct calculation now leads to the result,

det [4Dii] = sinS0 [1-- /13/C1 y-' 1 
i,-,° I](A4)

In this equation, the tzj's are defined by equation (20) and the ,cj's are the principal
curvatures as described in the text. This result can be seen to be independent of 0.
Thus, for the purpose of determining the signature of $,i, t may be set equal to zero.
The zeroes at 0=0 or 7r are due to the singularities of the coordinate system at these
points and can be disregarded here.

It can be seen from (A4) that the sgn tij can only change when V moves through
a center of principal curvature of S,. Thus, for the purpose of determining sgn tij for
y near S.,, we can take y on S,; that is, we may set I y - = 0. In this case, we find
that

det i- Aji] =sin2  [s+ AA, ic, - 1] [A2+ A 2seC2 -sin 2] (A5)

Each factor here has two roots of opposite sign, leading to the conclusion that sgn
bij = 0. This completes the proof.

APPENDIX B

Lemma 2 will be proven in this appendix. The fourfold integral i N(x) in C and a
is of the form

0 N(x) = fD G(q) exp [iwt, (17) d17 2 d13 d174  (B1)

In this equation, the four variables, q, are just the variables, (, C2,ol,a 2 ), renamed to
make the discussion below easier. The phase §1 is just the phase 0 in the newly-
named variables, while G identifies the full, neutralized amplitude of (54) multiplied by
N*(z',z). The domain, D,,, is just the pair of domains in e and o: StxS. The
dependence of the integrand on z has been surpressed because it is not important in
this discussion.

The integrand has no stationary points in D. and vanishes C' smoothly on its
boundary. Therefore, the integrand is expanded as was done in the previous section
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[eq. (9)], in preparation for integration by parts:

G (qp)exp iW 1 (VI)1 v, G (q) exp [.§ + GI(q) exp [iA~ll

G V 2 G() (B2)

Substitute this identity into the previous equation and use the divergence theorem to

replace the first integrel over D,, by an integral over the boundary of this domain.
Since the integrand vanishes on the boundary, this first integral is zero and

3N*(z) = ± f Gl(t)exp iW i(")] l rh dn2 d q3 d ?74  (B3)

This process can be repeated recursively, as long as the integrand has derivatives in

D. Each time, another power of 1/iw is introduced as a multiplier of the integrand
while the integral, itself, remains finite. Thus, the claim of the lemma is confirmed.

APPENDIX C

Lemma 3 will be proven here. For brevity, set

'I(1 Z, Z') = r(z,.) + r(Z, Z') , (Cl)

and write the Taylor series for * as

,(.', Z, Z') = V',(Z', ;, Zr) + E E ( z' - z)a'" (C2)
n=2 IIvII=n

In this equation,

V= (VI, t2, V3) ivil = VI + V2+ V3
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V! = L! 2 ! V3 ! , (Z' -X)" ( -1) (Zi Z 2 )" (43 -X 3 )

a=Z = a' a2 az', (c3)

with the ai,'s being nonnegative integers.

Now define the vector k by

ki = wpj ,

a* 00 L'j 1 n %Flax + Ei E V V a"z, (C4)

j n=2 llll =n

(C4)

One can check that k'(z' - z) eqw4' by multiplying pj by w(z- zj and summing on j to
obtain the series in (C2) multiplied by w. Note that the radius of convergence of each
of the series in (C4) is the same as for the series in (C2). Furthermore, (59) follows by
direct computation. Thus, in some neighborhood of a, the transformation from (w, e) to
z is one-to-one. Indeed, with hindsight, choose N(z',z) to be small enough that H(z,e)
is nonvanishing on the support of N(z', z).

This completes the proof.
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